Important: Use custom search function to get better results from our thousands of pages

Use " " for compulsory search eg:"electronics seminar" , use -" " for filter something eg: "electronics seminar" -"/tag/" (used for exclude results from tag pages)

Tags: FADEC, Full, Authority, Digital, fadec aircraft, fadec authority, fadec airplanes, fadec aircraft engine, fadec autostart, fadec aviation, fadec au 540, fadec acronym, fadec airbus, fadec advantages, fadec control, fadec continental, fadec cessna, fadec components, fadec cirrus, fadec cf34, fadec cost, fadec cable, fadec control system, fadec crj, fadec design, fadec definition, fadec diagram, fadec development, fadec description, fadec diesel, fadec download, fadec decu, fadec diamond, fadec da 42, Engine, Control,
Thread Rating:
  • 0 Votes - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
FADEC - Full Authority Digital Engine Control.
Post: #1

FADEC is the acronym for Full Authority Digital Engine Control. It is a system consisting of a digital computer (called EEC /Electronic Engine Control/ or ECU /Electronic Control Unit/) and its related accessories which control all aspects of aircraft engine performance. FADECs have been produced for both piston engines and jet engines, their primary difference due to the different ways of controlling the engines.

Electronics' superior accuracy led to early generation analogue electronic control first used in Concorde's Rolls-Royce Olympus 593 in the 1960s. Later in the 1970s NASA and Pratt and Whitney experimented with the first experimental FADEC, first flown on an F-111 fitted with a highly modified Pratt & Whitney TF-30 left engine. The experiments led to Pratt & Whitney F100 and Pratt & Whitney PW2000 being the first military and civil engines respectively fitted with FADEC and later the Pratt & Whitney PW4000 as the first commercial 'Dual FADEC' engine.

The aircraft's thrust lever sends electrical signals (pilot's command, may also be the autothrottle) to the FADEC. The FADEC digitally calculates and precisely controls the fuel flow rate to the engines giving precise thrust. In addition to the fuel metering function, the FADEC performs numerous other control and monitoring functions such as Variable Stator Vanes (VSV's) and Variable Bleed Valves (VBV's) control, cabin bleeds and power off-takes control, control of starting and re-starting, turbine blade and vane cooling and blade tip clearance control, thrust reversers control, engine health monitoring, oil debris monitoring and vibration monitoring. The inputs come from various aircraft and engine sensors. Apart from the key parameters that are monitored for a safe thrust control (shaft rotational speeds, pressures and temperatures at various points along the gas path) the FADEC also monitors hundreds of various analog, digital and discrete data coming from the engine subsystems and related aircraft systems, providing a fully redundant and fault tolerant engine control.
Post: #2
please send me fadec full report and ppt
Post: #3
to get information about the topic "FADEC - Full Authority Digital Engine Control." full report ppt and related topic refer the link bellow
Post: #4

.docx  FADEC.docx (Size: 901.49 KB / Downloads: 109)


Turbine engines provide the propulsive force for a significant percentage of modern transportation systems and are especially important as the engine for a wide variety of aircraft. Although often viewed as a mature technology, a substantial amount of resources are expended to improve these Systems because of the large impact they have on society. The NASA program in Fundamental Aeronautics [1] describes one such research effort and is aimed at reducing emissions, fuel burn, and noise. Separately, the Department of Defense’s Versatile Affordable Advanced Turbine Engines (VAATE) Program [2] describes similar goals regarding fuel burn reduction with perhaps more emphasis on overall performance and reducing cost. A multitude of fundamental technologies are involved in realizing these improvements, however, many of them are only enabled or reach full potential through the use of supporting controls technology.
The control system is not generally considered to be the limiting factor in the performance of an engine. Controls do have a direct impact on performance by how well they enable the engine system to operate within its design envelope. Yet the control system negatively affects performance indirectly because it has physical mass and volume. It also uses electric power and dissipates heat which ultimately impacts weight and volume. More control capability through sensing and actuation could feasibly enable better engine performance; however this is constrained because the impact outweighs the gain. The control architecture can be a tool to reduce the negative impact of an existing control capability or provide additional performance capability with the same impact.

FADEC – Full Authority Digital Engine Control

The newest version of a jet engine fuel control is called a FADEC - Full Authority Digital Electronic Control. The original fuel controls on early jet engines of the late 1940's and early 1950's were simply constructed and resembled a common gate valve connected to a throttle lever, Engines and controls became more sophisticated through the 1950's and 1960's, Better performance, more reliability, and increased safety became driving forces, the new electronic fuel controls will be even smarter, more precise, more accurate and more reliable than present day fuel controls and they will be with us for many years.
Full Authority Digital Engine Control (FADEC) is a system consisting of a digital computer, called an electronic engine controller (EEC) or engine control unit (EEU), and its related accessories that control all aspects of aircraft engine performance. FADECs have been produced for both piston engines and jet engines.
FADEC is a system consisting of a digital computer and ancillary components that control an aircraft’s engine and propeller. First used in turbine-powered aircraft, and referred to as full authority digital electronic control, these sophisticated control systems are increasingly being used in piston powered aircraft.


Developed in the early 1970s for military aircraft, electronic flight and engine-control system have found increasing application in commercial fleets of the world. The goal of any engine control system is to allow the engine to perform at maximum efficiency for a given condition. The complexity of this task is proportional to the complexity of the engine. Originally, engine control systems consisted of simple mechanical linkages controlled by the pilot, but then evolved and became the responsibility of the third pilot-certified crew member, the flight engineer. By moving throttle levers directly connected to the engine, the pilot or the flight engineer could control fuel flow, power output, and many other engine parameters.
Following mechanical means of engine control came the introduction of analog electronic engine control. Analog electronic control varies an electrical signal to communicate the desired engine settings. The system was an evident improvement over mechanical control but had its drawbacks, including common electronic noise interference and reliability issues.


Full authority analogue control was used in the 1960s and introduced as a component of the Rolls Royce Olympus 593 engine of the supersonic transport aircraft Concorde. However, the more critical inlet control was digital on the production aircraft.
Following analog electronic control, the logical progression was to digital electronic control systems. Later in the 1970s, NASA and Pratt and Whitney experimented with the first experimental FADEC, first flown on an F-111 fitted with a highly modified Pratt & Whitney TF30 left engine. The experiments led to Pratt & Whitney F100 and Pratt & Whitney PW2000 being the first military and civil engines, respectively, fitted with FADEC, and later the Pratt & Whitney PW4000 as the first commercial "dual FADEC" engine. The first FADEC in service was developed for the Harrier II Pegasus engine by Dowty & Smiths Industries Controls.
Today, each FADEC is unique and therefore expensive to develop, produce, maintain and upgrade for its particular application.


Full Authority Digital Engine (or Electronics) Control (FADEC) is a system consisting of a digital computer, called an electronic engine controller (EEC) or engine control unit (ECU), and its related accessories that control all aspects of aircraft engine performance. FADECs have been produced for both piston engines and jet engines.


An engine control unit (ECU) is a type of electronic control unit that controls a series of actuators on an internal combustion engine to ensure the optimum running. It does this by reading values from a multitude of sensors within the engine bay, interpreting the data using multidimensional performance maps (called Look-up tables), and adjusting the engine actuators accordingly.
Before ECU's, air/fuel mixture, ignition timing, and idle speed were mechanically set and dynamically controlled by mechanical and pneumatic means. One of the earliest attempts to use such a unitized and automated device to manage multiple engine control functions simultaneously was the "Kommandogerät" created by BMW in 1939, for their 801 14-cylinder aviation radial engine.

Working Of ECU

Control of ignition timing

A spark ignition enigine requires a spark to initiate combustion in the combustion chamber. An ECU can adjust the exact timing of the spark (called ignition timing) to provide better power and economy. If the ECU detects knock, a condition which is potentially destructive to engines, and "judges" it to be the result of the ignition timing being too early in the compression stroke, it will delay (retard) the timing of the spark to prevent this. Since knock tends to occur more easily at lower rpm, the ECU controlling an automatic transmission will often downshift into a lower gear as a first attempt to alleviate knock.

Control of Air/Fuel ratio

For an engine with fuel injection, an engine control unit (ECU) will determine the quantity of fuel to inject based on a number of parameters. If the Throttle position sensor is showing the throttle peddle is pressed further down, the Mass flow sensor will measure the amount of additional air being sucked into the engine and the ECU will inject more fuel into the engine. If the Engine coolant temperature sensor is showing the engine has not warmed up yet, more fuel will be injected (causing the engine to run slightly 'rich' until the engine warms up). Mixture control on computer controlled carburetors works similarly but with a mixture control solenoid or stepper motor incorporated in the float bowl of the carburetor.

Control of idle speed

Most engine systems have idle speed control built into the ECU. The engine RPM is monitored by the crankshaft position sensor which plays a primary role in the engine timing functions for fuel injection, spark events, and valve timing. Idle speed is controlled by a programmable throttle stop or an idle air bypass control stepper motor. Early carburetor-based systems used a programmable throttle stop using a bidirectional DC motor. Early TBI systems used an idle air control stepper motor . Effective idle speed control must anticipate the engine load at idle. Changes in this idle load may come from HVAC systems, power steering systems, power brake systems, and electrical charging and supply systems. Engine temperature and transmission status, and lift and duration of camshaft also may change the engine load and/or the idle speed value desired.

Marked Categories : what is fadec, engine control, crj fadec, fadec, full authority digital engine control pdf, abstract for full authority digital engin control, full authority digital engine control, fadec full authority digital engine control abstract, info on fadec associated with jet engines, full authority digital engine control ppt, fully authority digital aircraft engine control applications pdf, fadec componens, full authority digital engine control fadec, define fadec in jet engine, fadec pdf, full authority digital engine control doc, ppt on full autoritydigital engine control, fadec full authority digit, fadec full authority digital engine control, abstract on fadec,

Quick Reply
Type your reply to this message here.

Image Verification
Image Verification
(case insensitive)
Please enter the text within the image on the left in to the text box below. This process is used to prevent automated posts.

Possibly Related Threads...
Thread: Author Replies: Views: Last Post
  hydroforming full report project report tiger 5 25,252,265 19-01-2018 01:37 AM
Last Post: Guest
  COST EFFECTIVENESS OF MINERAL WOOL INSULATION Vs PERLITE INSULATION full report project report tiger 2 11,813,215 18-01-2018 11:53 AM
Last Post: dhanabhagya
  Solar pond technology full report seminar girl 2 782 18-01-2018 10:08 AM
Last Post: dhanabhagya
  Ultrasonic Trapping In Capillaries For Trace-Amount Bi (Download Full Seminar Report) Computer Science Clay 2 6,451,948 17-01-2018 11:59 AM
Last Post: dhanabhagya
  fuel from plastic waste full report seminar presentation 25 97,483,721 17-01-2018 10:40 AM
Last Post: dhanabhagya
  nanorobotics full report project topics 24 76,149,665 16-01-2018 05:50 PM
Last Post: Guest
  anti locking braking system full report seminar topics 6 19,561,494 14-01-2018 04:56 AM
Last Post: SharonJer
  GPS for Environmental Management full report project report tiger 5 19,783,470 12-01-2018 10:52 AM
Last Post: dhanabhagya
  Treatment of Distillery Wastewater Using Membrane Technologies full report project topics 3 29,070,707 12-01-2018 10:49 AM
Last Post: dhanabhagya
  harnessing high altitude wind power full report computer science topics 7 14,081,952 12-01-2018 10:42 AM
Last Post: dhanabhagya
This Page May Contain What is FADEC - Full Authority Digital Engine Control. And Latest Information/News About FADEC - Full Authority Digital Engine Control.,If Not ...Use Search to get more info about FADEC - Full Authority Digital Engine Control. Or Ask Here